Astrocyte-mediated activation of neuronal kainate receptors.

نویسندگان

  • Qing-song Liu
  • Qiwu Xu
  • Gregory Arcuino
  • Jian Kang
  • Maiken Nedergaard
چکیده

Exogenous kainate receptor agonists have been shown to modulate inhibitory synaptic transmission in the hippocampus, but the pathways involved in physiological activation of the receptors remain largely unknown. Accumulating evidence indicates that astrocytes can release glutamate in a Ca(2+)-dependent manner and signal to neighboring neurons. We tested the hypothesis that astrocyte-derived glutamate activates kainate receptors on hippocampal interneurons. We report here that elevation of intracellular Ca(2+) in astrocytes, induced by uncaging Ca(2+), o-nitrophenyl-EGTA, increased action potential-driven spontaneous inhibitory postsynaptic currents in nearby interneurons in rat hippocampal slices. This effect was blocked by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptor antagonists, but not by selective AMPA receptor or N-methyl-d-aspartate receptor antagonists. This pharmacological profile indicates that kainate receptors were activated during Ca(2+) elevation in astrocytes. Kainate receptors containing the GluR5 subunit seemed to mediate the observed effect because a selective GluR5-containing kainate receptor antagonist blocked the changes in sIPSCs induced by Ca(2+) uncaging, and bath application of a selective GluR5-containing receptor agonist robustly potentiated sIPSCs. When tetrodotoxin was included to block action potentials, Ca(2+) uncaging induced a small decrease in the frequency of miniature inhibitory postsynaptic currents, which was not affected by AMPA/kainate receptor antagonists. Our data suggest that an astrocyte-derived, nonsynaptic source of glutamate represents a signaling pathway that can activate neuronal kainate receptors. By modulating the activity of interneurons, astrocytes may play a critical role in circuit function of hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered expression of orexin 1 and endocannabinoid 1 receptors of the hippocampus in three pentylenetetrazol, pilocarpine and kainate seizure models

Introduction: Seizure is synchronous and abnormal brain neuronal activity that leads to activation of different receptors capable of enhancing or suppressing seizure activity such as orexin receptor 1 (OXR1) and/or endocannabinoid receptor 1(CBR1). The time of activation for the receptors may influence seizure control. Therefore, this study aimed to investigate the latency for and the change of...

متن کامل

Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death.

The extracellular acidity that accompanies brain hypoxia-ischemia is known to reduce both NMDA and AMPA-kainate receptor-mediated currents and NMDA receptor-mediated neurotoxicity. Although a protective effect of acidic pH on AMPA-kainate receptor-mediated excitotoxicity has been assumed, such has not been demonstrated. Paradoxically, we found that lowering extracellular pH selectively increase...

متن کامل

Functional role of astrocyte glutamate receptors and carbon monoxide in cerebral vasodilation response to glutamate.

In newborn pigs, vasodilation of pial arterioles in response to glutamate is mediated via carbon monoxide (CO), a gaseous messenger endogenously produced from heme degradation by a heme oxygenase (HO)-catalyzed reaction. We addressed the hypothesis that ionotropic glutamate receptors (iGluRs), including N-methyl-D-aspartic acid (NMDA)- and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic ac...

متن کامل

AMPA receptor activation is rapidly toxic to cortical astrocytes when desensitization is blocked.

Although cultured astrocytes express functional glutamate receptors, they are generally resistant to excitotoxic cell death. We explored the role of receptor desensitization in glutamate-mediated astrocyte injury. In cultures of type 1 astrocytes from mouse neocortex, brief application of AMPA evoked small, rapidly desensitizing inward currents, whereas kainate evoked small, sustained currents....

متن کامل

Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons

Astrocyte responds to neuronal activity with calcium waves and modulates synaptic transmission through the release of gliotransmitters. However, little is known about the direct effect of gliotransmitters on the excitability of neuronal networks beyond synapses. Here we show that selective stimulation of astrocytes expressing channelrhodopsin-2 in the CA1 area specifically increases the firing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 9  شماره 

صفحات  -

تاریخ انتشار 2004